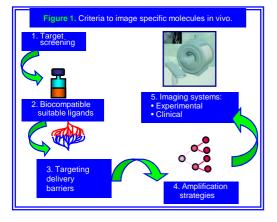
New Perspectives in Magnetic Resonance Molecular Imaging

Carmen Burtea, Sophie Laurent, Luce Vander Elst, Robert N Muller Department of Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory University of Mons-Hainaut, 24 Avenue du Champ de Mars, B-7000 Mons, Belgium Robert.Muller@umh.ac.be



INTRODUCTION

UMH

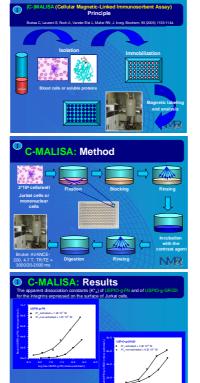
ecular imaging = characterization and measurement of biologic processes at the cellular and molecular level (Weissleder R. Mahmood U. Molecular imaging, Radiology, 219, 2001, 316-333). Criteria to image specific molecules in vivo (Figure 1): ⇒ availability and reasonable pharmacodyn Ability to overcome biologic delivery barriers

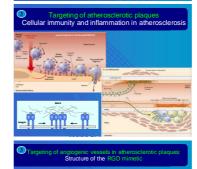
- (vascular, interstitial, cell membrane) ⇒ use of amplification strategies (chemical or
- biological)
- availability of sensitive, fast, high-resolution
- imaging techniques

Molecular contrast agents for MRI

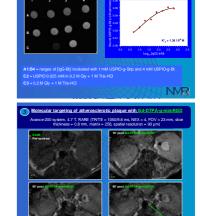
- Conventionally accepted:
- tissue concentration of receptors (moles/g): 10-9 10-13 M
- minimum concentration for visibility by MRI:
 6th generation dendrimer with max relaxivity (moles/g): 5.2 x 10-12
 - superparamagnetic iron oxide (moles of particles/g): 1.6 x 10-11

MR contrast agents as biochemical reporters:


- enzyme activated calcium activated
- pH-activated
- pO₂ activated
- protein bound
 T₂ activated
- chemical exchange saturation transfer


MRI applications of molecular contrast agents vivo application

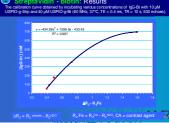
- diagnosis of a particular pathology:
 - atherosclerosis (cathepsin B, fibrin)
 - •inflammation (E-selectin)
- cancer (angiogenesis)
- monitoring of gene therapy and chemotherapy: detection of apoptosis
- gene expression as a reporter of gene therapy In vitro applications:
 - contrast agents as magnetic relaxation switches
 - (sensing of molecular interactions)
 - high throughput screening


MR molecular contrast agents developed by our team In vitro applications:

- C-MALISA: application of C-ELISA for MRI
- Streptavidin-biotin interaction as an amplification system; MR relaxometry
- MALISA
- In vivo applications:
- Molecular targeting of atherosclerotic plaque with a small molecular weight non-peptidic RGD mimetic grafted to:
 - USPIO • Gd-DTPA

CONCLUSIONS

C-MALISA:


- high-throughput setting
- Allows the accurate detection and quantification of the cell surface receptors
- ⇒ offers a second application for the contrast agents
- Streptavidin-based magnetic nanosensors (MRI and relaxometry):
 - ⇒ highly sensitive to IgG-Bt concentrations in the nanomolar range
 - ⇔can be used to sense various molecular interactions
- MRI detection of vulnerable atherosclerotic plaques:
 - mimRGD-based contrast agent contributes to the high-resolution in vivo molecular imaging and visualisation of unstable atherosclerotic lesions

ACKNOWLEDGEMENTS

This work was financially supported by the ARC program of the French Community of Belgium (research contract no. 00-05/258), by the DGTRE (Region of Wallonia, NOMADE project), and by the project of co-operation CNRS/CGRI-FNRS (research contract no. 12/02/2003-022-5, ref. PV/EJ/FR/1522/ng dossier 03/007).

NMR esults

Streptavidin - biotin: highly sensitive detection system

ation of K*_d for Strp – Bt interaction

Streptavidin - biotin and MALISA: